Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a SIL, HIL and Vehicle Test-Bench for Model-Based Design and Validation of Hybrid Powertrain Control Strategies

2014-04-01
2014-01-1906
Hybrid powertrains with multiple sources of power have generated new control challenges in the automotive industry. Purdue University's participation in EcoCAR 2, an Advanced Vehicle Technology Competition managed by the Argonne National Laboratories and sponsored by GM and DOE, has provided an exciting opportunity to create a comprehensive test-bench for the development and validation of advanced hybrid powertrain control strategies. As one of 15 competing university teams, the Purdue EcoMakers are re-engineering a donated 2013 Chevrolet Malibu into a plug-in parallel- through-the-road hybrid-electric vehicle, to reduce its environmental impact without compromising performance, safety or consumer acceptability. This paper describes the Purdue team's control development process for the EcoCAR 2 competition.
Technical Paper

Recent Developments in a Novel Blended Hydraulic Hybrid Transmission

2014-09-30
2014-01-2399
A novel Blended Hydraulic Hybrid transmission architecture is presented in this paper with benefits over conventional designs. This novel configuration combines elements of a hydrostatic transmission, a parallel hybrid, and a selectively connectable high pressure accumulator using passive and actively controlled logic elements. Losses are reduced compared to existing series hybrid transmissions by enabling the units to operate efficiently at pressures below the current high pressure accumulator's pressure. A selective connection to the high pressure accumulator also allows for higher system precharge which increases regenerative braking torque and energy capture with little determent to system efficiency. Finally operating as a hydrostatic transmission increases transmission stiffness (i.e. driver response) and may improve driver feel in certain situations when compared to a conventional series hybrid transmission.
Technical Paper

Excitation Strategies for a Wound Rotor Synchronous Machine Drive

2014-09-16
2014-01-2138
In this research, excitation strategies for a salient-pole wound rotor synchronous machine are explored using a magnetic equivalent circuit model that includes core loss. It is shown that the excitation obtained is considerably different than would be obtained using traditional qd-based models. However, through evaluation of the resulting ‘optimal’ excitation, a relatively straightforward field-oriented type control is developed that is consistent with a desire for efficiency yet control simplicity. Validation is achieved through hardware experiment. The usefulness/applicability of the simplified control to variable speed applications is then considered.
Technical Paper

A Transfer Path Approach for Experimentally Determining the Noise Impact of Hydraulic Components

2015-09-29
2015-01-2854
This work contributes to the overall goal of identifying and reducing noise sources and propagation in hydraulic systems. This is a general problem and a primary design concern for all fluid power applications. The need for new methods for identification of noise sources and transmission is evident in order to direct future modeling and experimental efforts aimed at reducing noise emissions of current fluid power machines. In this paper, this goal is accomplished through the formulation of noise functions used to identify contributions and transfer paths from different components of the system. An experimental method for noise transfer path analysis was developed and tested on a simple hydraulic system composed of a reference external gear pump, attached lines, and loading valve. Pressure oscillations in the working fluid are measured at the outlet of the pump. Surface vibrations are measured at multiple locations on the pump and connected system.
Technical Paper

Thin-Walled Compliant Mechanism Component Design Assisted by Machine Learning and Multiple Surrogates

2015-04-14
2015-01-1369
This work introduces a new design algorithm to optimize progressively folding thin-walled structures and in order to improve automotive crashworthiness. The proposed design algorithm is composed of three stages: conceptual thickness distribution, design parameterization, and multi-objective design optimization. The conceptual thickness distribution stage generates an innovative design using a novel one-iteration compliant mechanism approach that triggers progressive folding even on irregular structures under oblique impact. The design parameterization stage optimally segments the conceptual design into a reduced number of clusters using a machine learning K-means algorithm. Finally, the multi-objective design optimization stage finds non-dominated designs of maximum specific energy absorption and minimum peak crushing force.
Technical Paper

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

2019-06-05
2019-01-1533
Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc.
Technical Paper

Bayesian Optimization of Active Materials for Lithium-Ion Batteries

2021-04-06
2021-01-0765
The design of better active materials for lithium-ion batteries (LIBs) is crucial to satisfy the increasing demand of high performance batteries for portable electronics and electric vehicles. Currently, the development of new active materials is driven by physical experimentation and the designer’s intuition and expertise. During the development process, the designer interprets the experimental data to decide the next composition of the active material to be tested. After several trial-and-error iterations of data analysis and testing, promising active materials are discovered but after long development times (months or even years) and the evaluation of a large number of experiments. Bayesian global optimization (BGO) is an appealing alternative for the design of active materials for LIBs. BGO is a gradient-free optimization methodology to solve design problems that involve expensive black-box functions. An example of a black-box function is the prediction of the cycle life of LIBs.
Journal Article

High-Speed 3D Optical Sensing and Information Processing for Automotive Industry

2021-04-06
2021-01-0303
This paper explains the basic principles behind two platform technologies that my research team has developed in the field of optical metrology and optical information processing: 1) high-speed 3D optical sensing; and 2) real-time 3D video compression and streaming. This paper will discuss how such platform technologies could benefit the automotive industry including in-situ quality control for additive manufacturing and autonomous vehicle systems. We will also discuss some of other applications that we have been working on such as crime scene capture in forensics.
Journal Article

Detection of Pinion Grinding Defects in a Nested Planetary Gear System using a Narrowband Demodulation Approach

2021-08-31
2021-01-1100
Nested planetary gear trains, which consist of two integrated co-axial single-stage planetary gearsets, have recently been widely implemented in automobile transmissions and various other applications. In the current study, a non-destructive vibrational and acoustical monitoring technique is developed to detect a common type of gear grinding defect for a complex nested gear train structure. A nested gear train which has an unground pinion with unpolished teeth profile is used to exemplify the developed methodology. An experimental test stand with an open and vertical mounting configuration has been designed to acquire both vibrational and acoustical data. The measured data are investigated using several signal processing techniques to identify unground pinions in the gear system. A general frequency spectrum analysis is performed initially, which is then followed by a peak finding algorithm to identify the peaks in the spectrum.
Journal Article

Implementation of Thermomechanical Multiphysics in a Large-Scale Three-Dimensional Topology Optimization Code

2021-04-06
2021-01-0844
Due to the inherent computational cost of multiphysics topology optimization methods, it is a common practice to implement these methods in two-dimensions. However most real-world multiphysics problems are best optimized in three-dimensions, leading to the necessity for large-scale multiphysics topology optimization codes. To aid in the development of these codes, this paper presents a general thermomechanical topology optimization method and describes how to implement the method into a preexisting large-scale three-dimensional topology optimization code. The weak forms of the Galerkin finite element models are fully derived for mechanical, thermal, and coupled thermomechanical physics models. The objective function for the topology optimization method is defined as the weighted sum of the mechanical and thermal compliance. The corresponding sensitivity coefficients are derived using the direct differentiation method and are verified using the complex-step method.
Journal Article

Assessment of Large-Eddy Simulations of Turbulent Round Jets Using Low-Order Numerical Schemes

2017-03-28
2017-01-0575
The basic idea behind large-eddy simulation (LES) is to accurately resolve the large energy-containing scales and to use subgrid-scale (SGS) models for the smaller scales. The accuracy of LES can be significantly impacted by the numerical discretization schemes and the choice of the SGS model. This work investigates the accuracy of low-order LES codes in the simulation of a turbulent round jet which is representative of fuel jets in engines. The turbulent jet studied is isothermal with a Reynolds number of 6800. It is simulated using Converge, which is second-order accurate in space and first-order in time, and FLEDS, developed at Purdue University, which is sixth-order accurate in space and fourth-order in time. The high-order code requires the resolution of acoustic time-scales and hence is approximately 10 times more expensive than the low-order code.
Journal Article

Designing for Large-Displacement Stability in Aircraft Power Systems

2008-11-11
2008-01-2867
Due to the instabilities that may occur in power systems with regulated loads such as those used in military aircraft, ships, and terrestrial vehicles, many analysis techniques and design methodologies have been developed to ensure stable operation for expected operating conditions. However, many of these techniques are difficult to apply to complex systems and do not guarantee large-displacement stability following major disturbances such as faults, regenerative operation, large pulsed loads, and/or the loss of generating capacity. In this paper, a design paradigm is set forth guaranteeing large-displacement stability of a power system containing a significant penetration of regulated (constant-power) loads for any value of load power up to and including the steady-state rating of the source. Initial investigations are performed using an idealized model of a dc-source to determine the minimum requirements that ensure large-displacement stability.
Journal Article

Multi-objective Optimization Tool for Noise Reduction in Axial Piston Machines

2008-10-07
2008-01-2723
Noise generation in axial piston machines can be attributed to two main sources; fluid borne and structure borne. Any attempt towards noise reduction in axial piston machines should focus on simultaneous reduction of these two sources. A multi-parameter multi-objective optimization approach to design valve plates to reduce both sources of noise for pumps which operate in a wide range of operating conditions has been detailed in a previous work (Seeniraj and Ivantysynova, 2008). The focus of this paper is to explain the background and to demonstrate the functionality and usefulness of the methodology for pump design.
Journal Article

The Development of Terrain Pre-filtering Technique Based on Constraint Mode Tire Model

2015-09-01
2015-01-9113
The vertical force generated from terrain-tire interaction has long been of interest for vehicle dynamic simulations and chassis development. To improve simulation efficiency while still providing reliable load prediction, a terrain pre-filtering technique using a constraint mode tire model is developed. The wheel is assumed to convey one quarter of the vehicle load constantly. At each location along the tire's path, the wheel center height is adjusted until the spindle load reaches the pre-designated load. The resultant vertical trajectory of the wheel center can be used as an equivalent terrain profile input to a simplified tire model. During iterative simulations, the filtered terrain profile, coupled with a simple point follower tire model is used to predict the spindle force. The same vehicle dynamic simulation system coupled with constraint mode tire model is built to generate reference forces.
Technical Paper

Multi-Objective Bayesian Optimization Supported by Deep Gaussian Processes

2023-04-11
2023-01-0031
A common scenario in engineering design is the evaluation of expensive black-box functions: simulation codes or physical experiments that require long evaluation times and/or significant resources, which results in lengthy and costly design cycles. In the last years, Bayesian optimization has emerged as an efficient alternative to solve expensive black-box function design problems. Bayesian optimization has two main components: a probabilistic surrogate model of the black-box function and an acquisition functions that drives the design process. Successful Bayesian optimization strategies are characterized by accurate surrogate models and well-balanced acquisition functions. The Gaussian process (GP) regression model is arguably the most popular surrogate model in Bayesian optimization due to its flexibility and mathematical tractability. GP regression models are defined by two elements: the mean and covariance functions.
Technical Paper

Efficient Design of Shell-and-Tube Heat Exchangers Using CAD Automation and Fluid flow Analysis in a Multi-Objective Bayesian Optimization Framework

2024-04-09
2024-01-2456
Shell-and-tube heat exchangers, commonly referred to as radiators, are the most prevalent type of heat exchanger within the automotive industry. A pivotal goal for automotive designers is to increase their thermal effectiveness while mitigating pressure drop effects and minimizing the associated costs of design and operation. Their design is a lengthy and intricate process involving the manual creation and refinement of computer-aided design (CAD) models coupled with iterative multi-physics simulations. Consequently, there is a pressing demand for an integrated tool that can automate these discrete steps, yielding a significant enhancement in overall design efficiency. This work aims to introduce an innovative automation tool to streamline the design process, spanning from CAD model generation to identifying optimal design configurations. The proposed methodology is applied explicitly to the context of shell-and-tube heat exchangers, showcasing the tool's efficacy.
Journal Article

A Transfer-Matrix-Based Approach to Predicting Acoustic Properties of a Layered System in a General, Efficient, and Stable Way

2023-05-08
2023-01-1052
Layered materials are one of the most commonly used acoustical treatments in the automotive industry, and have gained increased attention, especially owing to the popularity of electric vehicles. Here, a method to model and couple layered systems with various layer types (i.e., poro-elastic layers, solid-elastic layers, stiff panels, and fluid layers) is derived that makes it possible to stably predict their acoustical properties. In contrast with most existing methods, in which an equation system is constructed for the whole structure, the present method involves only the topmost layer and its boundary conditions at two interfaces at a time, which are further simplified into an equivalent interface. As a result, for a multi-layered system, the proposed method splits a complicated system into several smaller systems and so becomes computationally less expensive.
X